Abstract
This paper describes the results of vibration tests using a 1/10 reduced scale model of large-scale cylindrical water storage tanks to clarify their dynamic behavior under seismic excitation. The thin sidewall of the tanks is not so rigid that the vibration modes (sloshing and bulging) induced by earthquake can affect the distribution of their liquid pressure and seismic load. It is, therefore, important for the seismic design of water storage tanks to consider such elastic deformation theoretically and experimentally. In this study, vibration tests by shaking table are conducted using a reduced scale tank model partially filled with water to investigate the dynamic fluid pressure behavior and seismic-proof safety of the tanks. A small sinusoidal excitation test, large amplitude sinusoidal excitation test and seismic excitation test are conducted. The measured values are compared with the calculated ones by some conventional seismic design methods. The results reveal that the distribution shape and magnitude of the dynamic fluid pressure are different between under positive and negative pressures and depend on the magnitude of input acceleration. Further examination concludes that the oval-type vibration, which is a high-order vibration mode, occurring on the sidewall of the tanks affects the distribution shape and magnitude of dynamic fluid pressure. However, it is demonstrated that the vibration does not act as a seismic load in the conventional evaluation of seismic-proof safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.