Abstract

Nonlinear energy sinks (NESs) are critically important for structural vibration suppression. They can absorb vibrational energy across a broad frequency spectrum, possess strong robustness, and have a relatively small mass. This study addresses the vibration suppression in a piecewise linear stiffness NES system under random excitation. Initially, a theoretical model of the piecewise linear stiffness NES system is developed. The piecewise linear stiffness function is approximated using Legendre polynomial approximation. Following this, the steady-state Fokker–Planck–Kolmogorov (FPK) equation of the system is formulated via the Generalized Harmonic Function Method. The FPK equation is solved using the fourth-order central difference method, and the effectiveness of this approach is validated by comparing the FDM results with numerical simulations. Lastly, the influence of varying system parameters on the stability of the piecewise linear stiffness NES system is analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.