Abstract

In this research, piezoelectric networking is investigated as an effective means for vibration suppression of mistuned bladed disk systems. Due to mistuning (i.e., imperfections in blade properties), bladed disks in turbo-machinery often suffer from vibration localization. In such cases, the vibration energy is confined to a small number of blades and forced response can be drastically increased when the structure is under engine order force excitation. To suppress the excessive vibration caused by localization, a piezoelectric networking concept has been proposed and analyzed for a multi-blade system in a previous study by the authors [1]. This research further extends the investigation with focus on circuitry design for a complex bladed disk model with the consideration of coupled blade-disk dynamics. A new multi-circuit piezoelectric network is designed and analyzed for multiple-harmonic vibration suppression of bladed disks. An optimal network is derived analytically based on system analysis. The performance of the network for bladed disks with random mistuning is examined using Monte Carlo simulation. The effects of variations (mistuning and detuning) in circuit parameters are also studied. Finally, a method to improve system performance and robustness is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call