Abstract

PurposeThe paper aims to reduce the low-frequency resonance and residual vibration of the robot during the operation, improve the working accuracy and efficiency. A reduced weight and large load-to-weight ratio can improve the practical application of a collaborative robot. However, flexibility caused by the reduced weight and large load-to-weight ratio leads to low-frequency resonance and residual vibration during the operation of the robot, which reduces the working accuracy and efficiency. The vibrations of the collaborative robot are suppressed using a modified trajectory-planning method.Design/methodology/approachA rigid-flexible coupling dynamics model of the collaborative robot is established using the finite element and Lagrange methods, and the vibration equation of the robot is derived. Trajectory planning is performed with the excitation force as the optimization objective, and the trajectory planning method is modified to reduce the vibration of the collaborative robot and ensure the precision of the robot terminal.FindingsThe vibration amplitude is reduced by 80%. The maximum torque amplitude of the joint before the vibration suppression reaches 50 N·m. After vibration suppression, the maximum torque amplitude of the joint is 10 N·m, and the resonance phenomenon is eliminated during the operation process. Consequently, the effectiveness of the modified trajectory planning method is verified, where the vibration and residual vibration in the movement of the collaborative robot are significantly reduced, and the positioning accuracy and working efficiency of the robot are improved.Originality/valueThis method can greatly reduce the vibration and residual vibration of the collaborative robot, improve the positioning accuracy and work efficiency and promote the rapid application and development of collaborative robots in the industrial and service fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.