Abstract
AbstractIn this talk, a piezoelectric shunt damping is introduced to an acoustic black hole beam to form an acoustic black hole (ABH) piezoelectric composite structure, and its vibration characteristics are analyzed by a semi-analytical method. Based on the Hamilton principle, the Mexican hat wavelet is used as the shape function, and the energy method is used to solve the free and forced vibration of the acoustic black hole beam structure with PZT. The present results agree with those of the finite element method. To improve the effectiveness of the acoustic black hole, an external shunt circuit is connected to the PZT and shunt damping with the local resonance mechanism is introduced. The vibration characteristics of the beam with shunt damping and ordinary damping are compared and analyzed. The vibration suppression of ABH beam by piezoelectric shunt damping with different positions is discussed, and the optimal position is obtained. The designed acoustic black hole beam with shunt damping is significantly attenuated than the traditional damping layer acoustic black hole beam, which provides a new idea for the low-frequency vibration control of the acoustic black hole structure.KeywordsAcoustic black holePiezoelectric shunt dampingVibration suppressionHamilton principle
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.