Abstract
This article considers the design of an adaptive iterative learning controller for high-rise buildings with active mass dampers (AMDs). High-rise buildings in this article are seen as distributed parameter systems, in which the characteristics of every point in buildings should be considered. Two partial differential equations (PDEs) and several ordinary differential equations are used to describe the model of buildings. To achieve the control target that is to suppress the vibration induced by high winds, an adaptive iterative learning controller is proposed for the flexible building system with boundary disturbance. The convergency of the adaptive iterative learning control (AILC) approach is proven by serious theory analysis. In simulations and experiments, this article uses both the analysis of figures and quantitative analysis (root-mean-square values) to illustrate the efficiency of the AILC scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.