Abstract
Purpose of reseach is Study of vibration stability of the impulse system of direct current electric drive in order to ensure operating modes with specified dynamic characteristics. Methods. The stability analysis of periodic solutions of differential equations with discontinuous right-hand side is reduced to the problem of studying local stability of fixed map points. Results. The analysis of stability is carried out depending on the supply voltage of the electric drive and the gain of the correcting link in the feedback circuit. It is revealed that the boundary of the stability region on the plane of the variable parameters has a pronounced extremum in the form of a maximum at the bifurcation point of codimension two, also called the resonance point 1: 2. On one side of this point, the stability region is bounded by the NeimarkSacker bifurcation line, and on the other, by the period-doubling bifurcation line. This means that with a change in the parameters, the radius of the stability region first increases, reaching a maximum at the resonance point 1: 2, and then decreases. This important conclusion can be used in optimization calculations. Conclusion. The analysis of the vibration stability of the impulse system of direct current electric drive, the behavior of which is described by differential equations of the discontinuous right-hand side, is carried out. The problem of finding periodic solutions to differential equations is reduced to the problem of finding fixed points of the map. The fixed points of the map satisfy a system of nonlinear equations, which was solved numerically by the NewtonRaphson method. The stability of periodic solutions of differential equations corresponds to the stability of fixed points of the corresponding map. The studies were carried out with variation of the gain in the feedback circuit and the supply voltage. It is revealed that the loss of a fixed point occurs through the supercritical Neimark-Sacker bifurcation, when the complex-conjugate pair of multipliers leaves the unit circle when the parameters change. However, with an increase in the supply voltage, the Neimark-Saker bifurcation boundary passes into the perioddoubling bifurcation boundary at the 1: 2 resonance point.
Highlights
The stability analysis of periodic solutions of differential equations with discontinuous right-hand side is reduced to the problem of studying local stability
The analysis of stability is carried out depending on the supply voltage of the electric drive
It is revealed that the boundary of the stability region
Summary
Исследование устойчивости колебаний импульсной системы управления электроприводом постоянного тока с целью обеспечения рабочих режимов с заданными динамическими характеристиками. Анализ устойчивости периодических решений дифференциальных уравнений с разрывной правой частью сводится к задаче исследования локальной устойчивости неподвижных точек отображения. Выполнен анализ устойчивости импульсной системы управления электроприводом постоянного тока, поведение которой описывается дифференциальными уравнениями разрывной правой частью. Задача поиска периодических решений дифференциальных уравнений сведена к задаче поиска неподвижных точек отображения. Устойчивость периодических решений дифференциальных уравнений отвечает устойчивости неподвижных точек соответствующего отображения. Исследования проводились при вариации коэффициента усиления в цепи обратной связи и напряжения питания. Однако при увеличении напряжения питания граница бифуркации Неймарка-Сакера переходит в границу бифуркации удвоения периода в точке резонанса 1:2. Ключевые слова: система автоматического управления электроприводом; широтно-импульсная модуляция, устойчивости периодических режимов; кусочно-гладкие отображения; бифуркация Неймарка-Сакера; бифукация удвоения периода; точка резонанса 1:2. Устойчивость колебаний импульсной системы управления электроприводом // Известия Юго-Западного государственного университета.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.