Abstract

Fault detection is desirable for increasing machinery availability, reducing consequential damage, and improving operational efficiency. Many of these faulty situations in three-phase induction motors originate from an electrical source. Vibration signal analysis is found to be sensitive to electrical faults. However, conventional methods require detailed information on motor design characteristics and cannot be applied effectively to vibration diagnosis because of their nonadaptability and the random nature of the vibration signals. This paper presents the development of an online electrical fault detection system that uses neural network modeling of induction motor in vibration spectra. The short-time Fourier transform is used to process the quasi-steady vibration signals for continuous spectra so that the neural network model can be trained. The electrical faults are detected from changes in the expectation of modeling errors. Experimental observations show that a robust and automatic electrical fault detection system is produced whose effectiveness is demonstrated while minimizing the triggering of false alarms due to power supply imbalance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.