Abstract
New experimental results are presented on the fundamental IR band shape of HCl dissolved in neat liquid Ar and Ar doped with Kr and Xe. A strong enhancement of the absorption in the range of a central Q-branch is observed in the spectra of doped solutions. Semiclassical molecular dynamics simulations of the spectral band profile are carried out using (12-6) Lennard-Jones site–site interaction potentials. The parameters of these model potentials were deduced by fitting the available anisotropic interaction surfaces, accurately describing the structure of binary rare-gas-HCl van der Waals complexes. Simulations realistically reproduce the observed triplet band structure and its evolution with changing thermodynamic conditions. The analysis of the influence of anisotropic interactions on the orientational dynamics of solutes and orientation-dependent radial distribution functions reveals the mechanisms that contribute to appearance of the Q-branches. It is shown that long-living solute-solvent spatial correlations present in liquid solutions retain to some extent the properties of van der Waals complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.