Abstract

Abstract This paper presents a new approach of integrating the method of command input shaping and the technique of active vibration suppression for vibration reduction of flexible structures during slew operations. The control object is a flexible composite beam driven by a high torque DC motor with the presence of nonlinearities such as backlash and stick-slip type of friction. Two piezoelectric patches are bonded on the surface of the flexible beam near its cantilevered end and are used as the smart actuator and the smart sensor respectively. In this new approach, the method of command input shaping is used to modify the existing command so that less vibration will be caused by the command itself. To overcome the nonlinearities associated with the DC motor, an extended shaper is designed. The technique of active vibration suppression using smart materials is used to actively control the vibration during and after the slew. With this pair of smart actuator and smart sensor, a strain rate feedback (SRF) controller is designed for active vibration suppression. With the extended Zero Vibration Derivative (ZVD) shaper and the SRF controller, the proposed new approach can effectively reduce the vibration of the flexible beam during slew operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call