Abstract
The vibration power flow in a submerged infinite constrained layer damping (CLD) cylindrical shell is studied in the present paper using the wave propagation approach. Dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumptions. Besides, the pressure field in the fluid is described by the Helmholtz equation and the damping characteristics are considered with the complex modulus method. Then, the shell-fluid coupling dynamic equations are obtained by using the coupling between the shell and the fluid. Vibration power flows inputted to the coupled system and transmitted along the shell axial direction are both studied. Results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer will restrict the exciting force inputting power flow into the shell, especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order. Cut-off frequencies do not exist in the CLD cylindrical shell so that the exciting force can input power flow into the shell at any frequency and for any circumferential mode order. The power flow transmitted in the CLD cylindrical shell exhibits an exponential decay form along its axial direction, which indicates that the constrained damping layer has a good damping effect especially at middle or high frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.