Abstract

This study is devoted to examining the vibration behaviors of magneto-electro-elastic nanobeams with consideration of nanomaterial uncertainties induced by the atom defect and manufacturing deviation. Based on the nonlocal Timoshenko beam theory, the governing equations of a magneto-electro-elastic nanobeam resting on a Winkler–Pasternak foundation and subjected to electric and magnetic potentials are derived. The material properties of the magneto-electro-elastic nanobeam are treated as uncertain parameters with well-defined bounds to overcome the extensive information required in probabilistic evaluation. The range of natural frequency of the magneto-electro-elastic nanobeam is predicted via a non-probabilistic evaluation methodology, which is validated by comparing with Monte Carlo simulation and probabilistic evaluation methodology. Then, the parametric analyses are performed to reveal the coupling effects of nanomaterial uncertainties, and nonlocal parameter, as well as elastic foundation parameters on the vibration performance of magneto-electro-elastic nanobeams. It is demonstrated that the nanomaterial uncertainties affect the mechanical behaviors of magneto-electro-elastic nanostructures significantly and the present model can be degenerated into the deterministic model as the nanomaterial uncertainty is eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.