Abstract

Clearances are necessary in assemblage of mechanisms to allow the relative motion between the members. This clearance is due to machining tolerances, wear, material deformations, and imperfections, and it can worsen mechanism performance such as precision and vibration. As a new study in this topic, the effect of joint stiffness on the variation of instantaneous natural frequencies and mode shapes of a flexible four-bar mechanism with a clearance between coupler and follower is studied in this paper. To model the clearance, the continuous contact approach is used. The Lankarani’s and Nikravesh’s continuous contact force model is used to model the contact force arising from contact between journal and bearing. Finite element method is used to determine the instantaneous natural frequencies and their corresponding mode shapes. The stiffness of the clearance is modeled as a linear spring added to the assembled stiffness matrix. To validate the clearance model in rigid mechanism, the dynamic response is compared with the results in the literature. To show the validity of the formulation which calculates the instantaneous natural frequencies, two methods are used and compared with each other in the case no clearance exists. The results show that taking the joint stiffness into account has a considerable effect on the instantaneous natural frequencies and their corresponding mode shapes of a flexible multibody system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.