Abstract

This study investigates the dynamic interactions between high-speed trains and reinforced concrete viaducts using field measurements and numerical simulations. The dynamic responses of a 40 year old viaduct under high-speed train passage are measured. Using general finite-element method software, a new numerical vibration prediction scheme for a train–bridge system is developed. Following the Newmark scheme, a decoupling algorithm is derived through the contact force between a train and viaduct. Track irregularity is also taken into account. The proposed numerical scheme is verified through a comparison between calculated responses and in situ measured responses. This approach is expected to provide not only an accurate simulation tool for train-induced vibration, but also instructive information for the retrofit of railway structures, especially at higher speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.