Abstract

Free vibration response of laminated composite and sandwich shell is studied by using an efficient 2D FE (finite element) model based on higher order zigzag theory (HOZT). This is the first finite element implementation of the HOZT to solve the vibration problem of shells incorporating all three radii of curvatures including the effect of cross curvature in the formulation using Sanders’ approximations. The proposed finite element model satisfies the inter-laminar shear stress continuity at the interfaces in addition to higher order theory features, hence most suitable to model sandwich shells along with composite shells. The C0 finite element formulation has been done efficiently to overcome the problem of C1 continuity associated with the HOZT. The present model can also analyze shells with cross curvature like hypar shells, etc., besides normal curvature shells like cylindrical, and spherical shells. The numerical studies show that the present 2D FE model is more accurate than existing FE models based on first and higher order theories for predicting results close to those obtained by 3D elasticity solutions for laminated composite and sandwich shallow shells. Many new results are presented by varying different parameters which should be useful for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.