Abstract

This study analytically investigates the vibration of high-speed, compliant gear pairs using a model consisting of coupled, spinning, elastic rings. The gears are elastically coupled by a space-fixed, discrete stiffness element that represents the contacting gear teeth. Hamilton’s principle is used to derive the nonlinear governing equations of motion and boundary conditions. These equations are linearized for small vibrations about the steady equilibrium due to rotation. The equations are cast in operator form, which exemplifies their gyroscopic system structure. The eigenvalue problem is discretized using Galerkin’s method. The natural frequencies and vibration modes for an example aerospace gear pair are numerically calculated for a wide-range of rotation speeds. The system coupling leads to multiple eigenvalue veering regions as the gear rotation speed varies. Highly coupled vibration modes that have meaningful deflection in the discrete mesh stiffness occur within a set frequency band. The vibration modes within this band have distinct nodal diameter components that evolve with rotation speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.