Abstract

Free vibration of beams with intermediate point supports is studied by the classical Ritz method within the context of Euler beam theory. For the Ritz method, the displacement of a beam is approximated by a set of admissible trial functions which must satisfy the kinematic conditions at the ends and intermediate supports of the beam. To this end, a polynomial is superimposed on the conventional single-span beam vibration functions to form continuous-span or modified beam vibration functions. These modified beam functions are taken as the admissible trial functions for subsequent formulation. Stiffness and mass matrices are formulated using the conventional procedure and the resulting linear eigen-equation can be solved easily. A number of numerical examples are given to demonstrate the accuracy and efficiency of the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.