Abstract

This study deals with both analytical and experimental investigations of three-layer beams with cores of polyurethane foam and facings of unidirectional cord-rubber. Both of these materials are bimodular (i.e., having different behavior in compression as compared to tension). The new theory presented is a shear-flexible laminate version of the well-known Timoshenko beam theory, which, due to the bending-stretching coupling present in the bimodular case, results in a coupled sixth-order system of differential equations. In this theory, a separate derivation is presented for the shear correction factor. Due to the discontinuities in the normal stress distribution and the bimodularity, the shear correction factor is much different than the classical homogeneous material value of 5 6 . Theoretical and experimental results are presented for the frequencies of the first three modes of vibration for a pin-ended beam without axial restraint. This work is believed to be the first devoted to vibration of bimodular materials in a sandwich configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call