Abstract

From linear vibration theory for beams and plates, one can express the response as a linear combination of its natural modes. For beams, these eigenfunctions can be shown to be mutually orthogonal for any boundary conditions. For plates, orthogonality of the modes is not guaranteed, but can be proven for various boundary conditions. Modal analysis for beams and plates allows the system response to be broken down into simpler vibration models, due to the orthogonality of the modes. Here the modal analysis approach is extended to the vibration of thin cylindrical shells. The longitudinal, radial, and circumferential displacements are coupled with each other, due to Poisson's ratio and the curvature of the shell. As will be shown, the mode shapes can be solved analytically with numerically determined coefficients. The immediate application of this work will be for modal sensing of cylindrical shell vibrations using thin piezoelectric films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.