Abstract
The effects of spindles vibrational behavior on the stability lobes and the Chatter behavior of machine tools have been established. The service life has been observed to reducethe system natural frequencies. An analytical model of a multi-segment spinning spindle, based on the Dynamic Stiffness Matrix (DSM) formulation, exact within the limits of the Euler-Bernoulli beam bending theory, is developed. The system exhibits coupled Bending-Bending (B-B) vibration and its natural frequencies are found to decrease with increasing spinning speed. The bearings were included in the model usingboth rigid, simply supported, frictionless pins and flexible linear spring elements. The linear spring element stiffness is then calibrated so that the fundamental frequency of the system matches the nominal value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advanced Materials Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.