Abstract

The vibration behavior of a bridged single walled carbon nanotube with a bio-mass adsorbed at various positions subjected to temperature change is investigated. The frequency equation of the sensor is derived analytically based on nonlocal Euler–Bernoulli beam theory. The relationship between the vibration frequency, the temperature change, the nonlocal parameter, the attached bio-mass and its location was obtained. Results without temperature change are compared with available results of analytical and molecular mechanics. It is found that the influence of thermal effect on the frequency and sensitivity of the biosensor is significant if its length-to-diameter ratio is large. On the other hand, the effect of nonlocal parameter on the frequency and sensitivity of the biosensor increases if its length-to-diameter ratio decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.