Abstract

A nonlinear mathematical model is developed for studying the self-loosening behavior of preloaded countersunk threaded fasteners that are subjected to cyclic transverse loads. This paper investigates the effect of thread and bearing friction coefficients on the rate of loosening. Torque components acting on the bolt are divided into pitch and resistance torque components; the net torque determines whether or not the bolt will rotate loose under the external excitation. The accumulation of the differential amount of loosening rotation increments is converted into gradual loss of bolt tension/clamp load. Model prediction of the self-loosening behavior is experimentally validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call