Abstract

The objective of this research is to investigate the feasibility of utilizing eigenvector assignment and piezoelectric networking for enhancing vibration isolator design through energy confinement. For a classical periodic isolator structure, the material discontinuity creates stop bands that could suppress the wave propagation of external excitation in a particular frequency range. While effective, such method can not always create wide enough stop bands such that all the disturbance frequencies are covered. In this study, the eigenvector assignment technique and piezoelectric networks are utilized to reduce the transmissibility of the isolator modes near the boundary of the stop bands, and therefore widen the effective frequency range and enhance the performance of the isolator. The eigenvector assignment principle is to alter the mode shapes of the system so that the modal components have smaller amplitude in concerned coordinates than in other parts of the system. By applying the eigenvector assignment method on the spatially tailored periodic isolator structure, the attenuated end (the end of the isolator designed to have small vibration) response amplitude at resonant frequencies near the stop band can be reduced, which enhances the vibration isolation performance in the frequency range of interest. On the other hand, piezoelectric networks connecting to the isolator structure increase the degrees of freedom of the integrated system, and enlarge the design space for achievable eigenvectors. The right eigenvectors of this integrated system are selected such that the modal energy in the concerned area is minimized by using the Rayleigh Principle. The integrated system with assigned eigenvectors will re-distribute vibratory energy of the complete electromechanical system. Small vibration at the attenuated end of the isolator is achieved since the energy is confined in the circuitry and other parts of the isolator. Numerical simulations are performed to evaluate the effectiveness of the proposed method on vibration confinement for isolator designs. Frequency responses of the different generalized coordinates in the selected frequency range are illustrated. It is shown that with the piezoelectric networking and eigenvector assignment, the system energy is redistributed and confined in the unconcerned areas, which can greatly enhance the performance of the vibration isolation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.