Abstract

To achieve an ultralow-frequency vibration isolation platform for simulation of space environment, suspension method is always utilized. However, the natural frequency of the suspension system is inversely proportional to the length of the suspension cable. In order to further reduce the dynamic stiffness, compress the suspension area, and achieve vibration isolation for wide-amplitude excitations, we propose parallel-stack-assembly (PSA) design principle for Origamis to construct absolute zero-stiffness for required intervals. The dynamic model for wide-range amplitude and deformation, design criteria for required low-frequency large-amplitude isolation effectiveness, and analysis for nonlinear vibration isolation property are given. Finally, the prototype is carried out to validate the theoretical analysis and design principle. The PSA design principle of Origamis creates the large-amplitude and ultralow-frequency isolation property, and, the study expands the applicability of isolators for low-frequency excitation with large amplitude for the systems in aviation, marine etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call