Abstract

A theoretical and experimental study of vibration isolation for a source on a lightweight floor structure is presented. The effectiveness of one-stage and two-stage isolator systems is studied. Approximate formulae are presented for both low and high frequency for the receiver, the floor structure. For the mobility, a comparison between approximate formulae, numerical exact results and experimental results are presented. The low frequency asymptote for the approximate mobility is valid up to l/λp ≈ 1/4. The high frequency asymptote is valid from l/λp ≈ 1/2. A straight line can be drawn between these two points for the intermediate range 1/4 < l/λp < 1/2. Finally, a case study is presented. A fan is mounted on a wooden joist floor. The effect of both one and two stage isolation is demonstrated. It is clearly seen that the high mobility situation for the receiver is increased by adding a rigid body to the mount. Hence, in the frequency range of interest, the ‘receiver’ acts more or less as a blocked termination. A two-stage isolator almost completely eliminates the structure borne sound and compared to a one-stage isolator it reduces the sound by 20 dB at the rpm for the fan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.