Abstract
The present paper investigates friction-induced self-excited vibration of a bistable compliant mechanism. A pseudo-rigid-body representation of the mechanism is used containing a hardening nonlinear spring and a viscous damper. The mass is suspended from above with the spring-damper combination leading to the addition of geometric nonlinearity in the equation of motion and position- and velocity-dependent normal contact force. Friction input provided by a moving belt in contact with the mass. An exponentially decaying function of sliding velocity describes the friction coefficient and, thereby, incorporates Stribeck effect of friction. Eigenvalue analysis is employed to investigate the local stability of the steady-state fixed points. It is observed that the oscillator experiences pitchfork and Hopf bifurcations. The effects of the spring nonlinearity and precompression, viscous damping, belt velocity, and the applied normal force on the number, position, and stability of the equilibrium points are investigated. Global system behavior is studied by establishing trajectory maps of the system. Critical belt speed is derived analytically and shown to be only the result of Stribeck effect of friction. It is found that one equilibrium point dominates the steady-state response for very low damping and negligible spring nonlinearity. The presence of damping and/or spring nonlinearity tends to diminish this dominance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.