Abstract
AbstractPyroclastic flows are characterized by their high mobility, which is often attributed to gas fluidization of the usually fine and/or low‐density particles. However, the physical mechanism that might drive sustained fluidization of pyroclastic flows over extraordinarily long runout distances is elusive. In this letter it is proposed that a powerful mechanism to weaken the frictional resistance of pyroclastic flows would arise from the prolonged and intense mechanical vibrations that commonly accompany these dense gravitational fluid‐particle flows. The behavior of fine powders in a slowly rotating drum subjected to vibrations suggests that fluid‐particle relative oscillations in granular beds can effectively promote the pore gas pressure at reduced shear rates. Dynamical weakening, as caused by the enhancement of pore fluid pressure, may be an important mechanism in any geophysical process that involves vibrations of granular beds in a viscous fluid. This is particularly relevant for granular flows involving large amounts of fine and/or light particles such as pyroclastic density currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.