Abstract

An acoustic black hole (ABH) has been applied in the regulation of structural performance to form the aggregation effect of elastic waves in the local area of the structure, which has been used in energy harvesting in recent years. The piezoelectric vibration energy harvester (VEH) integrated with the beam of a bilateral periodic 1D ABH is proposed in this study. The theoretical model of the proposed VEH is established and analyzed based on the transfer matrix method. The performance of the VEHs is numerically simulated by COMSOL Multiphysics. The simulation results show that the performance of the bilateral ABH beam is higher than its traditional counterpart. Finally, the performance of the proposed VEH is validated in an experimental system. The experimental results show that the peak output voltage of the VEH Model 3 can reach 169.16 V, which is 1.9 times that of the traditional one. In the optimal impedance matching, the output power of the third bilateral VEH is 2.7 times that of the traditional ABH, which can reach 91.52 mW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call