Abstract

High vibration transfer from a tennis racquet to the player may cause discomfort, and is hypothesized to influence performance and the onset of muscle fatigue. This study examined a racquet with a novel vibration damping technology (VDT) designed to mitigate frame vibration. Racquet vibration, post-impact vibration transfer to the player, arm electromyographic activity and tennis performance were compared to a non-VDT racquet. Nineteen young adult, competitive tennis players hit forehands and serves until near exhaustion on two days; using one of the two racquets each day. Tri-axial accelerometers mounted to racquet shaft, hand and forearm recorded vibration behaviour. Surface electromyography recorded activity of five arm muscles. In comparison to the non-VDT racquet, the VDT design showed: 1) A significantly lower mean normalised acceleration signal energy at the racquet during unfatigued play (−40%) and at near exhaustion (−34%), which corresponded to a 20–25% lower signal energy at the hand. 2) Reduced signs of arm muscle fatigue at near exhaustion, which was most pronounced in biceps and wrist extensors. 3) Players hit 11% more forehands and placed 40% more hits in the target area at near exhaustion. Conclusion: VDT effectively reduces racquet vibration. Initial evidence indicates that it may delay muscle fatigue, which was associated with increased ball placement accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.