Abstract

A neuro-controller for vibration control of load in a rotary crane system is proposed involving the rotation about the vertical axis only. As in a nonholonomic system, the vibration control method using a static continuous state feedback cannot stabilize the load swing. It is necessary to design a time-varying feedback controller or a discontinuous feedback controller. We propose a simple three-layered neural network as a controller (NC) with genetic algorithm-based (GA-based) training in order to control load swing suppression for the rotary crane system. The NC is trained by a real-coded GA, which substantially simplifies the design of the controller. It appeared that a control scheme with performance comparable to conventional methods can be obtained by a relatively simple approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.