Abstract
In the present study, vibration control of laminated composite cantilever beam operating in the elevated thermal environment is achieved using combined experimental and numerical techniques. The impact hammer test is performed on the glass-epoxy cantilever beam at different temperatures. Experimentally recorded impact hammer force signals and piezoelectric accelerometer time-domain signals are processed through a system identification toolbox in MATLAB to obtain transfer functions of the plant models. A robust fuzzy logic controller is developed to accomplish the effective vibration control of a cantilever composite beam operating at different temperatures. The fuzzy logic controller with two inputs and one output is designed using the 20 if-then rules. The results are presented in both frequency and time domain, keeping the vibration attenuation of the fundamental frequency as the point of interest. The results indicate the proposed fuzzy logic control strategy can attenuate the vibrations of a cantilever composite beam for a wide temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.