Abstract

This work presents vibration control of a vehicle suspension system using a controllable electrorheological (ER) shock absorber activated by an energy generator without external power sources. The ER shock absorber has a rack and pinion mechanism which converts a linear motion of the piston to a rotary motion. This rotary motion is amplified by gears and subsequently activates a generator to produce electrical energy. The generated voltage is experimentally evaluated with respect to excitation magnitude and frequency of the ER shock absorber. After evaluating the damping force using the regenerated voltage, a quarter-car ER suspension model is established. A skyhook controller is then formulated and experimentally implemented to attenuate vibration using the regenerated energy. It has been demonstrated via experiment that suspension vibration under bumpy and sinusoidal road conditions is significantly controlled by activating the ER shock absorber operated by the proposed regenerative energy mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.