Abstract

We studied the vibration suppression of an end-capped cylindrical shell structure with surface bonded macro fiber composite actuators. The dynamic characteristics of the cylindrical shell structure were first analyzed, and then a negative velocity feedback algorithm was applied to suppress the structural vibration at resonance and nonresonance vibration frequencies. The modal mass and stiffness matrix of the smart cylindrical shell structure were extracted for the controller design. An active controller was designed to suppress vibration of the smart structure, and the control performance was evaluated in resonance and nonresonance regimes. It was found that structural vibration was reduced by adopting a proper negative velocity feedback control algorithm in both resonance and nonresonance regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.