Abstract
This paper investigates the vibration control of a tower-like structure utilizing a square tuned liquid damper (TLD) when the structure is subjected to horizontal, harmonic excitation. In the theoretical analysis, when the tuning condition, 1:1:1:1, is satisfied, the natural frequencies of the 2DOF structure and two predominate sloshing modes are nearly equal. Galerkin’s method is used to derive the modal equations of motion for sloshing. The nonlinearity of the hydrodynamic force due to sloshing is considered in the equations of motion for the 2DOF structure. Linear viscous damping terms are incorporated into the modal equations to consider the damping effect of sloshing. Van der Pol’s method is employed to determine the frequency response curves which are compared to the numerical simulation. The influences of the excitation frequency, the tank installation angle, and the aspect ratio of the tank cross-section on the response curves are examined. The theoretical results show that whirling motions and amplitude modulated motions (AMMs) including chaotic motions may occur in the structure because swirl motions and Hopf bifurcations followed by AMMs appear in the tank. It is also found that square TLDs work more efficiently than conventional rectangular TLDs, and its performance is further improved when the aspect ratio is slightly increased and the installation angle is equal to zero. Experiments were conducted in order to confirm the validity of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.