Abstract
AbstractSolar panels on spacecraft are typical kinds of flexible structures. Low‐frequency and large‐amplitude vibrations usually occur due to the inevitable disturbances of deployment impact, attitude/orbit maneuver, separation/docking impact, and so forth. These vibrations degrade the stability of the spacecraft platform, leading to a reduction in imaging quality and pointing direction accuracy. Vibration control is obligatory during flight missions. Here, we summarize the researches on vibration control of the solar panels. First, typical solar panels used in spacecraft and the specific difficulties in dynamic modeling and control design are introduced. Next, the researches on dynamic modeling methods, decentralized vibration control strategy, and in‐orbit vibration controller design technologies are presented sequentially. Finally, a practical example where our method was successfully applied in‐orbit is described. In conclusion, the theories, methods, and technologies presented in this review hold significant value for achieving high‐precision performance in large spacecraft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mechanical System Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.