Abstract

Based on the high-order coupling (HOC) modeling theory, vibration control of a rotating rigid-flexible coupled smart composite structure in temperature field is investigated. A flexible beam made of functionally graded materials (FGM) with a lumped mass and two piezoelectric films perfectly bonded to it is attached to a horizontal rotating hub. By using the method of assumed modes to describe the deformations of the FGM beam and piezoelectric films, the rigid-flexible coupling dynamic equations of the system with the high order geometric nonlinear terms are derived via employing Lagrange’s equations. A PD controller is used in the vibration control of the system. Simulation results indicate that the intense thermally induced vibrations of the FGM beam along the longitudinal and transverse direction are efficiently suppressed after the piezoelectric active control effect works. The HOC model is more accurate than the previous low order coupled (LOC) model when the temperature gradient increases. The influence of high-order nonlinearity in the present HOC model on the characteristics of dynamics and control of flexible structures should not be ignored. The effect of temperature variation on the free vibration characteristics of the rotating smart structure is gentle despite non-negligibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.