Abstract

This manuscript is concerned with the free vibration analysis of rotating orthotropic cantilever plates attached with an arbitrary stagger angle to a hub. The general governing equations which include both the centrifugal inertia forces and Coriolis effects are derived using Hamilton’s principle. The results are obtained using extended Kantorovich method and extended Galerkin method which are compared with each other, and available data in the literature and in good agreements are observed. A very detailed study of the influence of varying stiffness ratio, rotation speed, stagger angle, hub radius ratio and aspect ratio on the dynamic characteristics is conducted. These investigations provide complementary results, which leads to improvement in design and appropriate optimization of the material and geometry in this class of problems. The observation of the results shows that the crossing/veering phenomenon is influenced by the stiffness ratio, stagger angle and hub radius ratio. It is found that the centrifugal stiffening rate in the spanwise bending modes is constant, while in the torsion mode is changeable. The plate with the lower stiffness ratio has the higher centrifugal stiffening rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.