Abstract

A novel metamaterial periodic multi-span beam with elastic supports and local resonators is designed and studied. The vibration characteristics of the designed metamaterial multi-span beam structure are investigated by the spectral element method (SEM) combined with the transfer matrix method (TMM). The accuracy and feasibility of the theoretical methods are validated by the finite element method (FEM) and vibration experiment. It is demonstrated that the metamaterial periodic multi-span beam with elastic supports can produce local resonance bandgaps in the low-frequency regions and Bragg bandgaps in the middle- and high-frequency regions. For some support stiffnesses, the amplitudes and widths of the bandgaps for the proposed structure are larger than those of the metamaterial multi-span beam with simply supported boundaries. Thus, the positions and ranges of the Bragg bandgaps can be adjusted by changing the stiffness of the elastic supports so as to improve the vibration reduction performance of the structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call