Abstract

Vibration energy harvesting technology is expected to solve the power supply and endurance problems of wireless sensor systems, realize the self-power supply of wireless sensor systems in coal mines, and promote the intelligent development of coal mine equipment. A combined beam tri-stable piezoelectric energy harvester (CTPEH) is designed by introducing magnetic force into the combined beam structure. In order to explore the vibration characteristics of CTPEH, a nonlinear magnetic model is obtained based on the magnetic dipole theory, and the dynamic equation of the system is established using the Lagrange theorem and Rayleigh–Ritz theory. The influence of the different magnet distances and excitation conditions on the static bifurcation characteristics and dynamic response characteristics of the system are analyzed by numerical simulation, and the simulation results are validated by the experiments. The research results show that the motion state of the CTPEH system has four transition forms from mono-stable to tri-stable with the change in magnet distance. The tri-stable system has three potential energy curves with different characteristic shapes. The appropriate starting excitation position and excitation frequency can make it easier for the system to realize a large-amplitude response state, thereby improving the output performance of the system. This research provides new ideas and methods for optimizing the performance of the combined beam piezoelectric energy harvester.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.