Abstract

The present article deals with the vibration and damping characteristics of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structure in different hygrothermal conditions. Carbon nanotube reinforced polymer as a matrix phase and carbon fibre as a reinforcing phase are used, and carbon fibre is graded with uniform distribution along the thickness direction for the shell panel according to the power law distribution. The Mori–Tanaka scheme and strength of materials are used to determine the mechanical properties of such functionally graded carbon nanotubes reinforced hybrid composite materials. Finite element modelling has been done by considering an eight-noded shell element with the transverse shear effect according to Mindlin’s hypothesis, and an oblique coordinate system is used for the functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures. Damping is incorporated into such carbon nanotube–based hybrid skewed shell structure based on the Rayleigh damping model. A MATLAB-based in-house computer code has been developed for the proposed formulation and verified with published research work before using for the present dynamic analysis of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structure under hygrothermal conditions. The effect of the carbon nanotube, carbon fibre, material distribution as per power law index and hygrothermal conditions on the damping behaviour of such functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures have been studied. Furthermore, parametric studies are carried out for the first resonant frequency, absolute amplitude, settling time and carbon nanotube impact on the vibrational behaviour of different functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures under different hygrothermal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call