Abstract

In the present research, modeling and vibration analysis of the double of sandwich beams which are coupled by visco-Pasternak medium are investigated. Also, this system is rested on Winkler foundation. Sandwich beams consist of magnetorheological core and carbon nanotubes/fiber/polymer composite facesheets. The material properties of magnetorheological core are obtained using the experimental data available in literature. Halpin–Tsai model is utilized to determine the material properties of carbon nanotubes/fiber/polymer composite facesheets. Hamilton principle is used to obtain the equations of motion of this system. Based on Navier’s method, a closed-form solution is presented for free vibration analysis of coupled magnetorheological sandwich beams under simply supported boundary conditions. The effects of various parameters such as core-to-facesheets thickness ratio, length-to-thickness ratio, magnetic field intensity, volume fractions of carbon nanotubes, and fibers and visco-Pasternak coefficients on the natural frequencies and loss factors of coupled system are discussed. The results show that the modal loss factor, unlike natural frequency, decreases by increasing magnetic field intensity. These findings can be used in design and manufacturing of sandwich structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.