Abstract

One prominent problem for vibration-based structural health monitoring is to extract condition indices which are sensitive to damage and yet insensitive to measurement noise. In this paper, a condition index extraction method based on the wavelet packet transform (WPT) is proposed. This transform leads to the formulation of a novel condition index: wavelet packet signature (WPS). The sensitivity of the WPS to the change of structural parameters is derived and validated on a five-degrees-of-freedom spring-mass system. Results show that the WPS is significantly more sensitive to the stiffness change than the natural frequencies and the mode shapes. Its sensitivity is slightly better or comparable to that of the modal flexibility matrices depending on the location of damage. A variability analysis is also performed to study the effect of measurement noise on the proposed WPS. Results show that the WPS does not show any significant variation even under the presence of 10 dB noise. To illustrate the potential of the WPS, a damage indicator is formulated and used to monitor the health condition of the structural system. An experimental study on a three-storey frame shows that when incorporated with a statistical process control approach, the WPS-based damage indicator can distinctly identify the presence of damage in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.