Abstract

In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues\' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues\' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.