Abstract

Vibration-based health monitoring (VBHM) has successfully been used to assess the structural damage to bridges, buildings, aircraft, and rotating machinery. There is significant incentive to apply VBHM techniques to the damage detection and conditional assessment of earth structures (geostructures), e.g., foundations, dams, embankments, and tunnels, to improve design, construction, and performance. An experimental program was carried out to explore the efficacy of VBHM of earth structures. A vibratory roller compactor, instrumented with triaxial accelerometers to continuously measure drum and frame vibrations, was operated on a number of underlying material structures with varying properties. Time-domain and frequency-domain analyses of the coupled machine/earth structure response were performed to glean machine vibration features that reflect changes in underlying structural properties. Results illustrate that drum and frame acceleration amplitudes were fairly insensitive to changes in underlying media stiffness; however, drum acceleration frequency components (harmonics) were found to be sensitive to changes in underlying media and changes in soil properties during compaction. The strata underlying the soil undergoing compaction was found to strongly affect drum vibration characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.