Abstract

Structural health monitoring techniques, particularly vibration-based damage detection, have gained significance in assessing civil structure condition. This paper focuses on utilising mode shape curvature for damage detection in a one-story steel frame structure. The study aims to overcome traditional inspection limitations by exploring vibration-based approaches. Experimental investigation is conducted to analyse intact and damaged structural modal behaviour. Modal analysis technique extracts modal frequencies and mode shapes, enabling analysis of mode shape curvature for damage detection and localisation. Preliminary findings show that damaged structures display deviations in mode shapes and reduced natural frequencies, providing evidence of structural damage. However, a significant issue arises near the support, where unexpected patterns emerge in the Total Damage Index (TDI) with increasing damage severity. This finding challenges the expected correlation between severity levels and TDI values, highlighting the need to consider factors like fixed supports. Misleading signs of damage in some segments underscore the importance of cautious result interpretation and accounting for noise. Future studies should focus on noise resistance, false indication mitigation, and understanding segments with fixed supports to enhance mode shape curvature analysis’s reliability for damage detection in civil structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call