Abstract

The effects of higher order deformations on natural frequencies and buckling stresses of a thick shallow shell with reactangular planform subjected to uniaxial and biaxial in-plane stresses are studied. Based on the power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional higher order shallow shell theory is derived through Hamilton's principle. Several sets of truncated approximate theories which can take into account the complete effects of higher order deformations such as shear deformations with thickness changes and rotatory inertia are applied to solve the vibration and stability problems of a thick shallow shell. Three types of simply supported shallow shells with positive, zero and negative Gaussian curvatures are considered. In order to assure the accuracy of the present theory, convergence properties of the lowest two natural frequencies for the first vibration moder=s=1 are examined in detail. The present results are also compared with those of existing theories. In the case of a simply supported shallow shell, buckling stresses can be calculated from the natural frequencies without in-plane stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.