Abstract

In the present paper, natural frequencies and stability of a spinning polar orthotropic disk subjected to a stationary concentrated transverse load are investigated. The analysis of the free vibration of a spinning disk is performed first to find natural frequencies and corresponding vibration modes. The resulting eigenfunctions obtained from the free vibration are used as deflection functions of the forced vibration of a disk where the load is modelled as a mass–spring–dashpot system fixed in space. By using the Galerkin approximation method, eigenvalues of the whole system are determined. Results show that disks with higher values of modulus ratios or the Poisson ratios have higher natural frequencies, and the stability of the whole system can be improved by raising the value of the modulus ratio or lowering that of the Poisson ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.