Abstract

The high-frequency electromagnetic noise caused by a frequency converter power supply has become the main composition of the vibration and noise of frequency-converter-driven PMSMs. Determining how to reduce this kind of noise is very important to improve motor performance. This paper analyzes the frequency characteristics of the high-frequency noise generated by an inverter, using the magnetic circuit analysis and Maxwell tensor methods. The switching frequency and the natural frequencies of the main modes are optimized according to the modal characteristics of the motor in order to reduce the vibration and noise of the motor. The results show that the high-frequency electromagnetic vibration and noise generated by the inverter is mainly caused by the high-frequency switching harmonic current. The frequencies of the vibration and noise are related to the switching frequency and the modulation wave frequency. At the same time, the simulation calculation of the natural frequencies of the main modes and the noise spectrum obtained from the experiment provide direction for the optimization of the vibration noise near the switching frequency. The switching frequency optimization and the natural frequency optimization based on the main modes of the motor can effectively reduce vibration and noise. This work has certain reference significance for the design of low-noise PMSMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.