Abstract

The application of tuned mass dampers (TMDs) to offshore wind turbines has a huge potential to suppress the large vibration responses of these systems. Control module of TMDs is added into the wind turbine structural dynamics simulation code FAST and fully coupled aero-hydro-TMD-structural dynamics model of the 5MW Barge-type floating wind turbine by National Renewable Energy Laboratory (NREL) is established. A multi-parameter optimization study is performed to determine the optimal parameters of a fore-aft TMD system in the Barge-type model. The wind turbine model equipped with the optimal TMD is then simulated under five typical load conditions and the performance of the new system is evaluated. The results show that longitudinal loads at tower base and deflections at tower top reductions of up to 50% and longitudinal loads at blade root and deflections at blade tip reductions of up to 40% are achieved, which indicates that the optimal TMD can be used to suppress the vibration response of offshore wind turbines and also demonstrates the potential for TMD structural control approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call