Abstract

A heat exchanger with a curved baffle for an elastic-tube bundle (ETB) is designed to effectively improve the performance based on a common ETB heat exchanger, and this paper systematically studies its vibration and heat transfer characteristics under different inlet velocity and structural parameters. The results indicate that the ETB vibration characteristics increase significantly with an increasing velocity, and the average amplitude of the ETB at 0.7 m/s is 4.51 times higher than that at 0.1 m/s. Similarly, the heat transfer performance subsequently decreases, but the average heat transfer coefficient of the ETB is significantly increased with the increase of the inlet velocity. When the long axis increases from 45 to 75 mm, the vibration intensity of the ETB decreases sharply, and the x direction and the total vibration Aa decrease by 43.4 and 51.5%, respectively. At the same time, the heat transfer coefficient of the ETB and its growth rate decrease by 3.9 and 45.6%. Additionally, the baffle curvature has little impact on the vibration and heat transfer performance. The difference between the average heat transfer coefficient and the total vibration amplitude of the ETB for different baffle curvatures is less than 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.